COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW.

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphatic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

REQUIRED ATTACHMENTS

1. Fire Directory Listing Page
2. From **Notice of Acceptance**:
 - Front Page
 - Specific System Description
 - Specific System Limitations
 - General Limitations
 - Applicable Detail Drawings

3. Design Calculations per Chapter 16, or if applicable, RAS 127 or RAS 128
4. Other Component Notice of Acceptances
5. Municipal Permit Application
6. Owners Notification for Roofing Considerations (Re-roofing Only)
7. Any Required Roof Testing/Calculation Documentation

Any other additional data reasonably required by the Building Official to determine the integrity of the roofing system.
Section A (General Information)

Master Permit No._____________________ Process No.____________________
Contractor’s Name___
Job Address___

Roof Category
____ Low slope ____ Mechanically Fastened Tile ____ Mortar/Adhesive Set Tile
____ Asphalitic Shingles ____ Metal Panel/Shingles ____ Wood Shingles/Shakes
____ Prescriptive BUR-RAS 150

Are there Gas Vent Stacks?
 Yes ☐ No ☐

Type: Natural ☐ LPGX ☐

Roof Type
____ New Roof ____ Re-roofing ____ Recovering ____ Repair ____ Maintenance

Roof System Information
Low Slope Roof Area (SF) Steep Sloped Roof Area (SF) Total (SF)
_____________________ _________________________ ________________________

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and
overflow drains. Include dimensions of sections and levels; clearly identify dimensions of elevated
pressure zones and location of parapets.
Section C (Low Sloped Roof System)

Fill in the specific Roof Assembly Components and Identify Manufacturer (If a component is not used, identify as “NA”)

System Manufacturer: __________________________
NOA No: ________________________________
Design Wind Pressures, From RAS 128 or Calculations:
Pmax1: ______ Pmax 2: _______ Pmax 3: ______
Maximum Design Pressure, From the Specific NOA System: ________________________________
Deck:
Type: ________________________________
Gauge/Thickness: ________________________________
Slope: ________________________________
Anchor/Base Sheet & No. of Ply(s): __________
Anchor/Base Sheet Fastener/Bonding Material: ________________________________
Insulation Base Layer: ________________________________
Base Insulation Size and Thickness: __________
Base Insulation Fastener/Bonding Material: ________________________________
Top Insulation Layer: ________________________________
Top Insulation Size and Thickness: __________
Top Insulation Fastener/Bonding Material: ________________________________
Base Sheet(s) & No. of Ply(s): __________
Base Sheet Fastener/Bonding Material: ________________________________
Ply Sheet(s) & No. of Ply(s): __________
Ply Sheet Fastener/Bonding Material: ________________________________
Top Ply: ________________________________
Top Ply Fastener/Bonding Material: ________________________________
Surfacing: ________________________________

Fastener Spacing for Anchor/Base Sheet Attachment:
Field: ______ ”o/c @ laps & _______ rows @ ______”o/c
Perimeter: ______ ”o/c @ laps & _______ rows @ ______”o/c
Corner: ______ ”o/c @ laps & _______ rows @ ______”o/c

Number of Fasteners Per Insulation Board
Field _______ Perimeter _______ Corner _______

Illustrate Components Noted and Details As Applicable:
Wood-blocking, Gutter, Edge Terminations, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter-flashing, , Coping, Etc.

Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing
Or: Submit Manufacturers Details that Comply with RAS-111 and Chapter 16
Section D (Steep Sloped Roof System)

Roof System Manufacturer:__

Notice of Acceptance Number:__

Minimum Design Wind Pressures, If Applicable (from RAS 127 or Calculations):

P 1: _____________ P2:_____________ P3:_____________

Maximum Design Wind Pressure
(From the NOA Specific System):______________________________________

Method of tile attachment:__

Steep Sloped Roof System Description

Deck Type:__

Underlayment Type:__

Insulation:___

Fire Barrier:__

Fastener Type
&Spacing:________________________________

Adhesive Type:___

Type Cap
Sheet:__

Roof
Covering:__

Type & Size Drip
Edge:___

Roof Slope
_____:12

Ridge Ventilation?

Mean Roof Height:

SECTION E (Tile Calculations)

For moment based tile systems, choose either Method 1 or 2. Compare the values for M_r with the values from M_f. If the M_r values are greater than or equal to the M_f values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 “Moment Based Tile Calculations Per RAS 127”

\[
\begin{align*}
P_1: (x \lambda =) -Mg: = M_r1: \quad \text{NOA } M_f: \\
P_2: (x \lambda =) -Mg: = M_r1: \quad \text{NOA } M_f: \\
P_3: (x \lambda =) -Mg: = M_r1: \quad \text{NOA } M_f:
\end{align*}
\]

Method 2 “Simplified Tile Calculation Per Table Below”

Required Moment of Resistance (M_r) From Table Below: \[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Mean Roof Height} & 15' & 20' & 25' & 30' & 40' \\
\text{Roof Slope} & 2:12 & 3:12 & 4:12 & 5:12 & 6:12 & 7:12 \\
\text{Required Moment Resistance} & 34.4 & 36.5 & 38.2 & 39.7 & 42.2 & 32.2 & 34.4 & 36.0 & 37.4 & 39.8 & 30.4 & 32.2 & 33.8 & 35.1 & 37.3 & 28.4 & 30.1 & 31.6 & 32.8 & 34.9 & 26.4 & 28.0 & 29.4 & 30.5 & 32.4 & 24.4 & 25.9 & 27.1 & 28.2 & 30.0 \\
\hline
\end{array}
\]

*This table must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For uplift based tile systems use Method 3. Compare the values for F' with the values for F_r. If the F' values are greater than or equal to the F_r values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 “Uplift Based Tile Calculations Per RAS 127”

\[
\begin{align*}
(P_1: (x l: = x w:) - w: x \cos \theta:) = F_r1: \quad \text{NOA } F': \\
(P_2: (x l: = x w:) - w: x \cos \theta:) = F_r2: \quad \text{NOA } F': \\
(P_3: (x l: = x w:) - w: x \cos \theta:) = F_r3: \quad \text{NOA } F':
\end{align*}
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P_1 or P_2 or P_3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by a P.E. based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>T</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>λ</td>
<td>NOA</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>M_g</td>
<td>NOA</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>M_f</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>M_r</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>F'</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>F_r</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>NOA</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>l = length, w = width</td>
<td>NOA</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the Building Official at the time of permit application.
SECTION 1524
HIGH VELOCITY HURRICANE ZONES REQUIRED OWNERS NOTIFICATION FOR ROOFING CONSIDERATIONS

1524.1 Scope. 1524.1 As it pertains to this section, it is the responsibility of the roofing contractor to provide the owner with the required roofing permit, and to explain to the owner the content of this section. The provisions of Chapter 15 of the Florida Building Code, Building govern the minimum requirements and standards of the industry for roofing system installations. Additionally, the following items should be addressed as part of the agreement between the owner and the contractor. The owner's initial in the adjacent box indicates that the item has been explained.

1. **Aesthetics-Workmanship:** The workmanship provisions of Chapter 15 (High Velocity Hurricane Zone) are for the purpose of providing that the roofing system meets the wind resistance and water intrusion performance standards. Aesthetics (appearance) issues are not a consideration with respect to workmanship provisions. Aesthetic issues such as color or architectural appearance, that are not part of a zoning code, should be addressed as part of the agreement between the owner and the contractor.

2. **Renailing Wood Decks:** When replacing roofing, the existing wood roof deck may have to be renailed in accordance with the current provisions of Chapter 16 (High Velocity Hurricane Zones) of the Florida Building Code. (The roof deck is usually concealed prior to removing the existing roof system).

3. **Common Roofs:** Common roofs are those which have no visible delineation between neighboring units (i.e. townhouses, condominiums, etc.). In buildings with common roofs, the roofing contractor and/or owner should notify the occupants of adjacent units of roofing work to be performed.

4. **Exposed Ceilings:** Exposed, open beam ceilings are where the underside of the roof decking can be viewed from below. The owner may wish to maintain the architectural appearance, therefore, roofing nail penetrations of the underside of the decking may not be acceptable. The Florida Building Code provides the option of maintaining this appearance.

5. **Ponding Water:** The current roof system and/or deck of the building may not drain well and may cause water to pond (accumulate) in low-lying areas of the roof. Ponding can be an indication of structural distress and may require the review of a professional structural engineer. Ponding may shorten the life expectancy and performance of the new roofing system. Ponding conditions may not be evident until the original roofing system is removed. Ponding conditions should be corrected.

6. **Overflow scuppers (wall outlets):** It is required that rainwater flow off so that the roof is not overloaded from a build up of water. Perimeter/edge walls or other roof extensions may block this discharge if overflow scuppers (wall outlets) are not provided. It may be necessary to install overflow scuppers in accordance with the Florida Building Code, Plumbing.

7. **Ventilation:** Most roof structures should have some ability to vent natural airflow through the interior of the structural assembly (the building itself). The existing amount of attic ventilation shall not be reduced. It may be beneficial to consider additional venting which can result in extending the service life of the roof.

Owner's/Agent's Signature: ____________________________ Date: ______ / ______ / ______
Contractor's Signature: ____________________________ Permit Number: _______________________
Property Address: ________________________________
All roofing applications require this Rooftop Equipment Affidavit along with the High Velocity Hurricane Zone Uniform Permit Application Form.

ROOFTOP EQUIPMENT AFFIDAVIT

Process# ___ Permit # _____________________________

Address: ___ Lot: ____________ Block: _____________

Company Name: ___

Address: __

Name of Qualifier: ___ License #: ___________________________

Is there any equipment on the rooftop?

☐ No ☐ Yes

If yes: Is there an existing code-approved curb or stand? Yes ☐ No ☐

If curb or stand is proposed, two (2) copies of plans sealed by an engineer showing the attachment of stand/curb to roof and to the equipment are required. These plans must be according to Florida Building Code Section 1525 in its entirety. Upon submittal of an alteration or addition of a curb or stand, the Planning Division may determine the alteration of an existing screening device or addition of a screening device may be required.

Is there any electrical work to be completed?

☐ No ☐ Yes If Yes: An electrical permit application is needed.

__________________________ __________________________
Qualifier/Contractor Signature Date

Print name of person signing document

Sworn to(or affirmed) and subscribed before me this ________/_______/_________

Who is personally known _________ OR Produced ID _________

__________________________ __________________________
Notary Public Signature Notary Seal